Wi-Fi 7

Chung Duc Nguyen Dang VHT, Viettel Group

Overview

Wi-Fi 7 and Wi-Fi 6

Characteristics	Wi-Fi 6	Wi-Fi 7
IEEE standard	IEEE 802.11ax	IEEE 802.11be
Bandwidth (MHz)	20, 40, 80, 80+80, 160	Up to 320
Frequency bands (GHz)	2.4, 5, and 6	2.4, 5, and 6
Maximum data rate	9.6 Gbps	46 Gbps
Multilink operation	Not supported	Supported
Modulation	1024-QAM OFDMA	4096-QAM OFDMA
MIMO	8×8 MU-MIMO	8×8 MU-MIMO
Resource units (RUs)	No multi-RUs	Supports multi-RUs
Security protocol	WPA3	WPA3

Key Characteristics of Wi-Fi 7

- Multilink operation (MLO)
- 320 MHz Bandwidth
- 4096-QAM Modulation
- Multi-RUs
- Preamble Puncturing

Multilink operation (MLO)

Multilink operation (MLO)

- Enhances coordinated operations across multiple links, offering a stark contrast to the traditional, isolated operations over multiple bands in existing Wi-Fi technologies
- Multiple links boost channel access opportunities, markedly reducing latency
- Supports duplication across links to ensure successful transmission
- Assign data flows to specific links, catering to the unique needs of applications and achieving effective traffic separation and differentiation

MLO Modes

Wi-Fi 7 MLO Modes

MLO Mode	Radios	Characteristics	
EMLSR	1	Simultaneous listening on two links	
STR	≥ 2	Simultaneous transmission and reception on multiple links	
NSTR	≥ 2	Non-simultaneous transmission and reception on multiple links	
EMLMR	≥ 2	Dynamically reconfigure spatial multiplexing on each link	

Enhanced Multi Link Single Radio

- Exchange between a dual-radio AP MLD and single-radio STA MLD
- Can not use multiple links at the same time
- Throughout the transmission period on Link 2, Link 1 is inactive

Simultaneous Transmit and Receive

 The AP MLD and STA MLD are dual-radio MLDs, and can transmit UL and DL frames asynchronously on Link 1 and Link 2 at the same time

Non Simultaneous Transmit and Receive

 The AP MLD and STA MLD can transmit and receive simultaneously on Link 1 and Link 2, but cannot transmit on one link while receiving on another

Throughput of MLO

- Overlapping BSSs (OBSSs) consisting of one AP and one STA
- Two links in 5 and 6 GHz bands, MCS-13, two spatial streams, 80 MHz bandwidth
- The data comes in bursts of 150 kb approximately every 8.3 ms
- \bullet OBSS network load from 0 to 100 percent by changing the number of OBSSs from 0 to 10 [2]

Throughput of MLO

320 MHz Bandwidth

 \bullet To achieve a maximum throughput of at least 30 Gbps, Wi-Fi 7 introduces new bandwidth modes, including contiguous 320 MHz, and non-contiguous $160{+}160~\mathrm{MHz}$

4096-QAM Modulation

- Using the same coding, 4096-QAM achieves a 20% rate increase over 1024-QAM
- Users can achieve greater transmission efficiency with a higher transmission rate, resulting in faster downloads and uploads

Resource Unit (RU)

- OFDMA allows sub-carriers in a channel bandwidth to be grouped into smaller portions called "Resource Units" (RU)
- Are all of these used for data transmission? Certainly, not. A few of them are DC (direct conversion), Guard, and unused (Null Sub carriers) tones
- RU tones of 26, 52, 106, 242, and 996, which include data and pilot subcarriers

RU Locations with Channel Widths

Multi-RUs

- Wi-Fi 6 users must send or receive frames on their allocated RUs
- Wi-Fi 7 introduces a mechanism that enables the allocation of multiple RUs to a single user

Resource Units (RUs) and Combinations

RU Size

Allowed RU Combinations

Small-size RU

- 26-tone
- 52-tone
- 106-tone
- 26-tone + 106-tone RU for 20/40 MHz
- ullet 26-tone + 52-tone RU for 20/40/80 MHz

Resource Units (RUs) and Combinations

RU Size

Allowed RU Combinations

Large-size RU

- 242-tone
- 484-tone
- 996-tone, 2×996 -tone, 3×996 -tone
- 242-tone + 484-tone RU for 80 MHz
- ullet 484-tone + 996-tone RU for 160 MHz
- ullet 242-tone + 484-tone + 996-tone RU for 160 MHz
- 484-tone $+ 2 \times 996$ -tone RU for 240 MHz
- 2×996-tone RU for 240 MHz
- 484-tone + 3×996-tone RU for 320 MHz
- 3×996-tone RU for 320 MHz

Preamble Puncturing

- Isolates the affected part of the spectrum
- Use the rest of the channel, enhancing spectrum efficiency, by enabling wider channels in the face of interference, and accelerating data transmissions

References

IEEE Draft Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements.

IEEE

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: Enhancements for Extremely High Throughput (EHT)." IEEE P802.11beD5.0, November 2023, January 2024, 1–1045.

Overview and Performance Evaluation of Wi-Fi 7.

Chen, Cheng, Xiaogang Chen, Dibakar Das, Dmitry Akhmetov, and Carlos Cordeiro. IEEE Communications Standards Magazine 6, no. 2, June 2022.

Thank you for listening!

Chung Duc Nguyen Dang

ducndc@viettel.com.vn